Electron-Spin Magnetic Moments (g Factors) of the Oxides LiO, NaO, and the Superoxides LiO₂, NaO₂. An ab Initio Study

Pablo J. Bruna and Friedrich Grein*

Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6E2 Received: October 14, 1998; In Final Form: February 8, 1999

The electron-spin magnetic moments of the superoxides LiO₂ and NaO₂, as parametrized by the *g* factors, are studied at the uncorrelated (ROHF) and correlated (MRCI) ab initio levels. The present method, which uses a perturbative approach complete to second order, is based on the Breit–Pauli Hamiltonian. In the standard $C_{2\nu}$ notation for the MO₂ radicals, $\Delta g_{yy} > \Delta g_{zz} \gg |\Delta g_{xx}|$, where $\Delta g_{aa} = g_{aa} - g_e$. The perpendicular component Δg_{xx} , which is small and negative, is dictated by first-order terms (ground-state expectation values). The in-plane components Δg_{yy} and Δg_{zz} are large and positive. Δg_{yy} is governed by the second-order magnetic coupling between X²A₂ and 1²B₂ (electron excitation from the highest b₂ MO into the a₂(π^*) SOMO), and Δg_{zz} by the coupling with two ²A₁ states (excitations from the two highest a₁ MOs into π^*). The calculated data reproduce the experimental trends reasonable well. For the ground state X²A₂, the MRCI results for Δg_{xx} , Δg_{yy} , Δg_{zz} (in ppm, with ppm = 10⁻⁶) are -373 (-350), 56 800 (56 250), 7273 (6600) for LiO₂; and -393 (150), 110 492 (108 600), 6868 (4600) for NaO₂, with the experimental results given in parentheses (average from Ar and Kr matrices). For comparison purposes, the *g* shifts of the low-lying excited state 1²B₂ of LiO₂ and NaO₂, as well as the magnetic coupling parameters for O₂⁻, LiO, and NaO, are also reported.

Introduction

The electronic g factor of a radical is a fundamental quantity in electron spin resonance (ESR) spectroscopy. Values of Δg = $g - g_e$ relate to the change of the spin magnetic moment (μ_m) with respect to that of a free electron. The deviation from g_e depends mainly on the spin-orbit coupling (SO) of the ground state with particular excited states as well as on their energetic separation (ΔE) and magnetic overlap *L* (expectation value of the orbital angular-momentum operator). The knowledge of the g components provides information about the excitation energies of selected excited states.¹ The hyperfine coupling constants (hfcc's), also determined via ESR, only relate to the ground state, however. For π -radicals with little s-density on the nuclei, such as the alkali superoxides (MO₂), the hfcc's are small, and the g factors become the salient ESR parameter.²

Accurate theoretical predictions of g shifts have only been published recently. The different methods (e.g., multireference CI,^{3,4} density functional,^{5,6} MCSCF response theory,⁷ and energy derivative⁸) generally reproduce the experimental results within 20% or better. Small g shifts are affected by larger errors, though. However, since most ESR measurements are carried out for radicals in solution or trapped in inert matrices, full agreement between theory (simulating gas phase radicals) and experiment cannot be expected.

In a series of papers from this laboratory, Δg values have been presented for MgF,⁹ CO⁺, H₂O⁺, NO₂,^{4,10} H₂CONa,¹¹ H₂-COH,¹² O₃Li, and O₃Na,¹³ both at the uncorrelated (ROHF) and correlated (MRCI) levels. The approach uses first- and secondorder perturbation theory based on the Breit–Pauli Hamiltonian.^{1,3,9,14} The second-order contribution is calculated via a sumover-states (SOS) expansion. This strategy has the advantage of giving a transparent picture of the excited states responsible

* Corresponding author. E-mail: FRITZ@UNB.CA.

for the g shifts as well as additional information (such as excitation energies, f values, dipole moments) with little or no extra computational effort.

In this article, the g shifts of O_2^- stabilized in the alkali superoxides LiO₂ and NaO₂ will be presented, for both X²A₂ and 1²B₂ states. For comparison purposes, the vertical excitation energies and magnetic coupling parameters of free O_2^- , and of LiO and NaO are included. A short review of the experimental and theoretical literature on MO₂ systems which are relevant to this work, in particular on g-data and vertical excitation energies, is given next. More comprehensive reviews can be found in refs 15 and 16.

Literature Review

In the gas phase, the ground-state $X^2\Pi_g(3\sigma_g^{-2}1\pi_u^{-4}1\pi_g^{-3})$ of O_2^{-1} lies only 0.45 eV below $X^3\Sigma_g^{-}(3\sigma_g^{-2}1\pi_u^{-4}1\pi_g^{-2})$ of O_2^{-17} All electronically excited states of O_2^{-1} lie in the $O_2 + e^{-1}$ continuum. Information about the energetic location of a few resonant states has been provided by electron scattering experiments on $O_2^{-18,19}$

The O_2^- anion can be stabilized (i) as an adsorbed species on surfaces,²⁰ (ii) as a trapped impurity in ionic crystals,²¹ and (iii) as part of an ionic compound M⁺O₂⁻ (usually isolated in inert matrices).^{22,23} The analytical technique most widely used to identify O₂⁻ is based on the electronic *g* factor obtained from ESR measurements. For O₂⁻ adsorbed on surfaces,²⁰ *g* shifts along the O–O axis, ranging from 17 000 to 100 000 ppm, were measured (with ppm = 10⁻⁶). For O₂⁻ in ionic lattices,²¹ much larger Δg values were obtained (from 29 000 to 520 000 ppm).

Alkali halide (AH) crystals doped with O_2^- exhibit a characteristic yellow color due to the transition $1^2\Pi_u \rightarrow X^2\Pi_g$ of O_2^- .^{24,25} Pioneering work on the electronic and ESR spectra of O_2^- centers in AH crystals was carried out by Känzig and Cohen²¹ in 1959, who presented a simple two-state model correlating Δg -values with the crystal-field splittings of O_2^- .

The g shifts of O_2^- adsorbed on surfaces have been interpreted in the same manner.²⁰

The *g* factors of MO₂ (M = Li, Na, ..., Cs) have been measured in various matrices.^{22,23} For the Li and Na compounds, the largest shift has been assigned to Δg_{yy} (\approx 56 000 and 109 000 ppm, respectively), the component parallel to the O–O axis. This is followed by Δg_{zz} (4000 and 7000 ppm, respectively), where *z* is the $C_{2\nu}$ symmetry axis. The perpendicular component, Δg_{xx} , is small and negative (\approx -400 ppm on average). From the experimental Δg values, the nature of the ground state, and the approximate vertical ΔE of the two lowest electronic states of MO₂ could be obtained. Except for CsO₂, the *g* data indicated that these radicals have a X²A₂ ground state, with 1²B₂ lying 2000–3000 cm⁻¹ higher.

For O⁻ adsorbed on surfaces,²⁰ ESR studies have found two components of Δg , with $\Delta g_{||} \approx 0$ and $\Delta g_{\perp} \gg 0$ (Δg_{\perp} values (in ppm) from 17 000 (ZnO) to 300 000 (KI)), indicating the existence of diatomic-like radicals.

According to ab initio studies,^{26–28} several excited potentials of free O₂⁻ have a minimum. For $R(OO) \leq 3.3$ bohr, the $1^2\Pi_{u^-}(1\pi_u \rightarrow 1\pi_g)$ potential of O₂⁻ lies above $X^3\Sigma_g^-$ of O₂. In that region, the leading configuration $1\pi_u^{-3}1\pi_g^4$ of $1^2\Pi_u$ mixes with $1\pi_u^41\pi_g^2p\pi_u$, where $p\pi_u$ is a diffuse MO.²⁹ Ewig and Tellinghuisen²⁸ calculated several electronic states of O₂⁻, both in vacuo and within a simulated ionic lattice (KCl). The energetic separation and spectroscopic constants for the $X^2\Pi_g$ and $1^2\Pi_u$ states remained essentially unchanged in both cases. For the simulated ionic environment, the $1^2\Pi_u$ potential at short R retained its valence composition upon expansion of the basis set with more diffuse AOs.

The separation ΔE between the lowest ${}^{2}\Pi$ and ${}^{2}\Sigma^{+}$ states of the alkali oxides $M-O^{30}$ and between the lowest ${}^{2}A_{2}$ and ${}^{2}B_{2}$ states of the superoxides $MO_{2}{}^{31}$ were determined theoretically. Both MO_{2} states have $C_{2\nu}$ equilibrium geometries, with the R_{e} and ω_{e} values of the O_{2} moiety being similar to those of O_{2}^{-} ; i.e., the superoxides have the structure $M^{+}O_{2}^{-}$.

Potential surfaces for the X²A₂ and 1²B₂ states of LiO₂ and NaO₂ were reported by Alexander³² (semiempirical) and by Schaefer and co-workers^{15,16} (ab initio). The X²Π($\pi^4\pi^3$) state of linear M–O–O splits into X²A₂ and 1²B₂; their relative separation is 0.72 eV for LiO₂ and 0.37 eV for NaO₂ (all data from Schaefer et al.).

Methods

1. Basis Sets and Programs Used. The basis sets used for Li and O, the 12s7p/7s4p contraction from Thakkar et al.,³³ are of quadruple- ζ quality. For Li, a d-function with exponent $\alpha = 0.15$ was added. The basis set for O was supplemented by one AO each of s($\alpha = 0.085$), p($\alpha = 0.059$), and d-type ($\alpha = 0.85$). The calculations on isolated O₂⁻, however, were done with a valence-only basis set (no semidiffuse s and p AOs included). McLean–Chandler's 12s9p/6s4p contraction³⁴ was taken for Na, which was augmented by one semidiffuse s ($\alpha = 0.0076$) and one polarization d-AO ($\alpha = 0.175$).

The correlated calculations were carried out using a multireference configuration interaction (MRDCI) approach.³⁵ The frozen core approximation was used, i.e., the inner shells 1s of O and Li, and 1s2s2p of Na were left uncorrelated, and the corresponding higher-lying species discarded (i.e., 7 valence electrons were correlated for the oxides M–O and 13 for $O_2^$ and MO₂). Throughout this work, the MO numbering corresponds to that of the valence shell. In general, up to nine electronic states were calculated at the CI level, in two different batches of about four or five states each, depending on the particular situation. On average, the dimension of the secular equations was in the $25\ 000-30\ 000$ range.

2. *g* Factor Calculations. The electron-spin magnetic moment, μ_s , of a radical is given as $\mu_s = -\mu_B g \cdot S$, where μ_B is the Bohr magneton, **S** the spin angular momentum vector, and *g* a second-rank tensor called the electronic *g* tensor.¹ The *g* components can be written as $g_{ab} = g_e \delta_{ab} + \Delta g_{ab}$, with $g_e = 2.002$ 319 corresponding to the free-electron *g* factor; δ_{ab} to the Kronecker delta; and *a*, *b* to the *x*, *y*, *z* coordinates. The electronic-charge centroid (ECC), calculated at the ROHF level, has been used here as gauge origin.³⁶ For $C_{2\nu}$ radicals, the Δg values are diagonal in the *x*, *y*, *z* coordinates; besides, Δg_{zz} is gauge invariant.

Details concerning the theoretical evaluation of Δg values can be found in refs 1, 3, 4, 10, and 14. In short, the present method is based on a perturbative approach, complete to second order in appropriate Breit–Pauli operators. A given Δg_{ab} is calculated as the sum of two first-order terms and one secondorder term. First-order contributions comprise the relativistic mass correction to the spin-Zeeman term (Δg_{RMC}) and the oneand two-electron spin-Zeeman gauge corrections (Δg_{GC-SZ}); the latter two corrections are also called *diamagnetic* contributions.⁵ Both first-order terms are simply ground state expectation values. The second-order contribution, or *paramagnetic* term,⁵ is calculated as a sum-over-states (SOS) expansion, where each term is directly proportional to the spin–orbit (SO) and orbital-Zeeman (L) matrix elements, and inversely proportional to the corresponding excitation energy (ΔE).

For linear radicals, the magnetic moment operator is given by $\boldsymbol{\mu}_{\mathbf{m}} = -\mu_{\mathrm{B}}(\Lambda + g_{\mathrm{e}}\Sigma)$, the sum of the orbital ($\boldsymbol{\mu}_{\mathbf{0}} = -\mu_{\mathrm{B}}\Lambda$) and spin ($\mu_{\rm s} = -\mu_{\rm B} g_{\rm e} \Sigma$) contributions.^{1,2,37} Λ represents the orbital angular momentum vector and Σ the electron spin vector. For an orbitally nondegenerate electronic state, the only orbital angular momentum is derived from spin-orbit mixing with excited states. For a ${}^{2}\Pi$ state, however, the quantum number Λ is ± 1 and Σ is $\pm 1/2$. In Hund's case (a), a $^{2}\Pi$ state arising from a π^3 configuration splits into the sublevels ${}^2\Pi_{3/2}$ and ${}^2\Pi_{1/2}$, with the former lying lower. At zero order, the magnetic moment (in $\mu_{\rm B}$ units) is approximately -2 for ${}^{2}\Pi_{3/2}$ and 0 for ${}^{2}\Pi_{1/2}$.⁴⁷ A ${}^{2}\Pi_{3/2}$ ground state is difficult to measure via ESR since the g values lie near $g_{\perp} = 4$ and $g_{\parallel} = 0$, and the resultant spectrum of randomly oriented molecules is smeared out.² For ${}^{2}\Pi_{1/2}$, both g_{\perp} and g_{\parallel} are close to zero, and therefore again an ESR spectrum can hardly be obtained.

O⁻ **Ion:** *g* **Factors for the Oxides LiO and NaO** $(1^{2}\Sigma^{+})$. Under the influence of an electric field of axial symmetry (*z*-axis), such as for O⁻ adsorbed on surfaces,²⁰ the ²P level of O⁻ splits into ${}^{2}\Sigma^{+}(2\sigma^{2}3\sigma 1\pi^{4})$ and ${}^{2}\Pi(2\sigma^{2}3\sigma^{2}1\pi^{3})$. In a simplified two-state model,²⁰ the Δg -values are

$$\Delta g_{||} = g_{zz} - g_{e} \approx 0$$
$$\Delta g_{||} = g_{xx} - g_{e} = g_{yy} - g_{e} \approx 2\lambda/\Delta E$$

where for λ the spin-orbit constant of O has been used, and $\Delta E = E({}^{2}\Pi) - E({}^{2}\Sigma^{+})$. This simple relation allows for estimating ΔE on the basis of g_{\perp} data, and *vice versa*. Since the aforementioned experiments found $\Delta g_{\perp} > 0$, it follows that ${}^{2}\Sigma^{+}$ is more stable than ${}^{2}\Pi$. The estimated ΔE 's for O⁻ adsorbed on surfaces are not higher than 0.1 eV.²⁰

The oxygen atom of the oxide M–O essentially has a net charge of -1, and the M–O radical undergoes a similar axial splitting as above. Detailed ab initio calculations³⁰ have found that the ground state is X²II for LiO and NaO, but X²Σ⁺ for KO, RbO and CsO. Since the ESR spectra of ²II radicals are

TABLE 1: Vertical Excitation Energies (ΔE), Spin–Orbit (SO), and Angular-Momentum (*L*) Matrix Elements, and Second-Order Contributions to the Δg_{\perp} Values for the X² Π and 1² Σ ⁺ States of LiO and NaO^a

		LiO (X ² Π) ($R_e = 3.167$ au)	LiO $(1^{2}\Sigma^{+})$ ($R_{e} = 2.984$ au)	NaO (X ² Π) ($R_e = 3.853 \text{ au}$)	NaO $(1^{2}\Sigma^{+})$ ($R_{e} = 3.670$ au)
$\Delta E (eV)$	ROHF	0.229	-0.111	0.050	0.041
	MRCI	0.387	-0.260	0.329	-0.230
	$(CI)^b$	0.315	-0.188	0.211	-0.112
SO (cm^{-1})	ROHF	69.52	70.12	68.15	68.19
	MRCI	60.44	61.00	57.19	57.28
L(au)	ROHF	0.9678	0.9583	1.0074	1.0030
	MRCI	0.9501	0.9395	1.0048	1.0012
Δg_{\perp} (ppm)	ROHF	149700	-311220	699920	826900
0 11	MRCI	75590	-112280	88980	-127030
	$(CI)^b$	92850	-155330	139400	-260720

^{*a*} Equilibrium bond distances taken from ref 30. ^{*b*} Using corrected ΔE 's (see text).

TABLE 2: MRDCI Data for Excited States of O_2^- As Calculated with a Valence Basis Set^{*a*} (Only Valence MOs Are Counted)

u states	S ^b	$\Delta E ({ m eV})$	g states		$\Delta E ({ m eV})$	SO (cm ⁻¹)	L (au)	$\Delta g_{\perp} (\mathrm{ppm})$
$1\pi_{\rm u} \rightarrow 1\pi_{\rm g}$	$1^2\Pi_u$	5.199	$2\sigma_{\rm g} \rightarrow 1\pi_{\rm g}^{c}$	$1^2\Sigma_g^+$	6.324	-73.57	-1.1808	6999
$1\pi_{\rm g} \rightarrow 2\sigma_{\rm u}^{d}$	$1^2 \Sigma_u^{-}$	6.210	$1\pi_{\rm u} \rightarrow 2\sigma_{\rm u}^{e}$	$1^2 \Sigma_g^{-}$	9.284	-27.43	0.3285	-494
-	$1^2\Delta_u$	6.272		$1^2\Delta g$	10.500	12.74	0.4489	277
	$1^2\Sigma_u^+$	6.765		$2^2\Sigma_g^+$	10.622	14.45	0.4785	332
$2\sigma_{\rm g} \rightarrow 2\sigma_{\rm u}$	$2^2\Pi_u$	12.510		5				

^{*a*} All data relative to $X^2\Pi_g$, at R(OO) = 2.551 bohr. ΔE , vertical excitation energy; SO and *L*, spin-orbit and angular momentum matrix elements, respectively; Δg_{\perp} , second-order contribution to the perpendicular *g* shift. ^{*b*} The oscillator strength *f* is 0.074 for $1^2\Pi_u$ and 0.012 for $2^2\Pi_u$; for the other doublet states, $f \approx 0.001$. ^{*c*} ROHF data: $\Delta E = 4.807$ eV; SO = -75.17 cm⁻¹; L = -1.1610 au; $\Delta g_{\perp} = 9248$ ppm. ^{*d*} $\Delta E(1^4\Sigma_u^-) = 4.721$ eV. ^{*e*} Only the lowest doublet of each symmetry is given.

difficult to measure, it is understandable why no such spectra have been observed for LiO and NaO. 38

The g-shifts of these M–O radicals are determined by the coupling between ${}^{2}\Sigma^{+}(2\sigma^{2}3\sigma1\pi^{4})$ and ${}^{2}\Pi(2\sigma^{2}3\sigma^{2}1\pi^{3})$, with 3σ and 1π being 2p(O) AOs. Excited states of charge-transfer character (i.e., those in which the unpaired electron has been transferred from O⁻ to M⁺) have no influence on the magnetic coupling.^{11,13}

We have calculated the second-order contribution (due to the electron spin) to the g_{\perp} shift for both X² Π and 1² Σ^+ states of LiO and NaO. The Δg_{\perp} value is proportional to (SO·L)/ ΔE , where SO = $\langle {}^{2}\Sigma^{+}|H_{so}|^{2}\Pi \rangle$ and $L \equiv \langle {}^{2}\Sigma^{+}|L|^{2}\Pi \rangle$, thus allowing to compare the theoretical values of SO·L with the "experimental" 2 λ of the two-state model.²⁰ When SO is given in cm⁻¹ and both L and ΔE in atomic units, use a factor of 18.72 to get Δg in ppm.

The g_{\perp} shifts of LiO and NaO are collected in Table 1. The ΔE value under the heading ROHF was calculated from differences in determinantal energies using $1^{2}\Sigma^{+}$ MOs. Our correlated *adiabatic* ΔE 's of 0.370 eV for LiO and 0.329 eV for NaO are 0.073 and 0.118 eV, respectively, higher than those from Langhoff et al.³⁰ obtained with larger basis sets. The "corrected" energies, given as "(CI)" in Table 1, were obtained by lowering our vertical ΔE 's by those amounts.

 Δg_{\perp} is extremely sensitive to the level of treatment. The SO matrix elements from CI wave functions are up to 20% smaller than those from ROHF; the *L* matrix elements are much less affected ($\approx 2\%$).

The O₂⁻ Ion *in Vacuo.* MCSCF/CI calculations have shown, when comparing the potential curves of $X^2\Pi_g$, $1^2\Pi_u$, and $1^4\Sigma_u^$ for O₂⁻ in vacuo with those in simulated ionic solids, that the corresponding values of R_e , ω_e , and ΔE change very little.²⁸ One important feature does change, however: the energy of low-lying excited states of "trapped" O₂⁻ moves below the energy of O₂($X^3\Sigma_g^-$), i.e., resonant states of negative ions stabilize in condensed media.³⁹ Thus, the magnetic coupling between $X^2\Pi_g$ and the excited states of free O₂⁻ is more or less preserved when this anion is placed in an ionic lattice, as in alkali MO₂ radicals, for example.

Table 2 gives the vertical excitation energies ΔE for excited states of O₂⁻ at R(O-O) = 2.551 bohr. The calculations have been carried out with $1^{2}\Sigma_{g}^{+}(2\sigma_{g}1\pi_{u}^{-4}1\pi_{g}^{-4})$ SCF-MOs to ensure degenerate π_{g} orbitals.

Relative to $X^2\Pi_g(2\sigma_g^{-2}1\pi_u^{-4}1\pi_g^{-3})$, the $1^2\Pi_u(1\pi_u \rightarrow 1\pi_g)$ and $1^2\Sigma_g^+(2\sigma_g \rightarrow 1\pi_g)$ states lie at about 5.20 and 6.32 eV, respectively. The excitation $1\pi_g \rightarrow 2\sigma_u$ gives rise to excited states ranging from 4.72 to 6.8 eV. The doublet states $1\pi_u \rightarrow 2\sigma_u$ (i.e., two each of type $2\Sigma_g^+$, $2\Sigma_g^-$, and $2\Delta g$) lie above 9 eV.

Only gerade states can magnetically couple with $X^2\Pi_g$; the corresponding SO and *L* matrix elements, and Δg values are also given in Table 2. For $1^2\Sigma_g^+$, a |L| value of about 1.2 au indicates a large "magnetic" overlap between $2\sigma_g$ and $1\pi_g$, as expected for 2p MOs. A SO value of about -74 cm^{-1} is typical for O_2^{40} and $O_2^{-.41}$ However, the contribution of this state to Δg_{\perp} is relatively modest (\approx 7000 ppm) because of its high ΔE .

The magnetic coupling of the lowest $1\pi_u \rightarrow 2\sigma_u$ states results in absolute Δg_{\perp} values not higher than 500 ppm. These small contributions are due to the high ΔE (>9 eV), relatively weak SO (<30 cm⁻¹) and moderate magnetic overlap *L* (<0.5 au).

The ${}^{2}\Sigma_{g}^{-}$, ${}^{2}\Sigma_{g}^{+}$, and ${}^{2}\Delta_{g}$ states (up to $\Delta E = 16 \text{ eV}$) contribute to Δg_{\perp} by -501, 173, and 400 ppm, respectively, resulting in an overall contribution of 72 ppm and showing a considerable cancellation of positive and negative terms. We expect the same feature for the excited states of MO₂ occupying the $\sigma^{*}(2\sigma_{u})$ MO.

The O₂⁻ Ion Stabilized in the Superoxides LiO₂ and NaO₂. (1) O₂⁻ in Orthorhombic Crystal Fields. When O₂⁻ is placed in a crystal field of orthorhombic ($C_{2\nu}$) symmetry, the degeneracy of the π orbitals is removed: π_g splits into a_2 and b_2 , and π_u into a_1 and b_1 . Now, π_g and σ_u can mix through their b_2 components, as do π_u and σ_g through a_1 orbitals. Table 3 summarizes the correlation between electronic states of O₂⁻ in D_{csh} and $C_{2\nu}$ symmetries. We use here the standard orientation for $C_{2\nu}$, in which x is perpendicular to the molecular plane, y

TABLE 3: Correlation between Doublet Electronic States of O_2^- in $D_{\infty h}$ and $C_{2\nu}$ Symmetries, and Contributions to Δg_{ii} Components (Only Valence Electrons Are Counted)

$D_{\infty h}{}^a$	$C_{2\nu}{}^b$	Δg_{ii}
$X^{2}\Pi_{g} (2\sigma_{g}^{2}1\pi_{u}^{4}1\pi_{g}^{3})$	$X^{2}A_{2} (2a_{1}^{2}3a_{1}^{2}1b_{1}^{2}2b_{2}^{2}1a_{2})$	
	$1^2B_2 (2b_2 \rightarrow 1a_2)$	уу
$1^2 \Pi_u (1\pi_u \rightarrow 1\pi_g)$	$1^2 B_1 (1b_1 \rightarrow 1a_2)$	xx
	$1^2A_1 (3a_1 \rightarrow 1a_2)$	ZZ
$1^2 \underline{\Sigma}_g^+ (2\sigma_g \rightarrow 1\pi_g)$	$2^2 A_1 (2a_1 \rightarrow 1a_2)$	ZZ
${}^{2}\Sigma_{u}^{-}, {}^{2}\Sigma_{u}^{+}, {}^{2}\Delta_{u} (1\pi_{g} \rightarrow 2\sigma_{u})$	$^{2}B_{2} (1a_{2} \rightarrow 3b_{2})$	уу
-	$^{2}A_{2}(2) (2b_{2} \rightarrow 3b_{2})$	
${}^{2}\Sigma_{g}^{-}, {}^{2}\Sigma_{g}^{+}, {}^{2}\Delta_{g} (1\pi_{u} \rightarrow 2\sigma_{u})$	$^{2}A_{1}(2) (1b_{1} \rightarrow 3b_{2})$	ZZ
	${}^{2}B_{1}(2) (3a_{1} \rightarrow 3b_{2})$	xx
$^{2}\Pi_{\rm u} \left(2\sigma_{\rm g} \rightarrow 2\sigma_{\rm u} \right)$	${}^{2}\mathrm{B}_{1} (2\mathrm{a}_{1} \rightarrow 3\mathrm{b}_{2})$	XX

^{*a*} States contributing to Δg_{\perp} are underlined. ^{*b*} Only singly-excited states given.

parallel to the O–O bond, and z coincides with the C_2 axis. Please note that in most experimental papers dealing with the g factors of O_2^- , the roles of the y and z axes are interchanged.

X²Π_g correlates with X²A₂ and 1²B₂, 1²Π_u(1π_u → 1π_g) with 1²A₁ and 1²B₁, and 1²Σ_g⁺(2σ_g → 1σ_g) with 2²A₁. Excited states arising by the promotion of an electron from a fully occupied MO into the SOMO (π_g) are the main contributors to g (upper part of Table 3), whereas those occupying the virtual 2σ_u (3b₂) MO should only be weakly magnetically coupled (high Δ*E*'s and small SO and *L* values, cf. Table 2).

In C_{2v} symmetry, the 2b₂ MO, mainly $[p_z(1) + p_z(2)]$, is more stable than 1a₂ $[p_x(1) + p_x(2)]$ as 2b₂ lies collinear to the *z* axis and therefore undergoes a stronger interaction with the crystal field than does 1a₂, which lies perpendicular to it. For X² Π_g - $(1\pi_g^3)$ in C_{2v} symmetry, the occupation 2b₂²1a₂ (X²A₂) is thus favored over 2b₂1a₂² (1²B₂).

In second order, the *g* components of X^2A_2 are governed by the magnetic coupling with excited states of type ${}^{2}B_1$ for g_{xx} , ${}^{2}B_2$ for g_{yy} , and ${}^{2}A_1$ for g_{zz} . Since in C_{2v} symmetry the ${}^{2}A_1$ components of the close-lying states ${}^{12}\Pi_u$ and ${}^{12}\Sigma_g^+$ can mix, g_{zz} might actually involve the coupling with *two* ${}^{2}A_1$ states (rather than with only one, as has been assumed in the literature).^{2,18,20,21,23} Excitations from doubly occupied MOs into the SOMO (1a₂) give positive contributions to Δg , whereas those into $\sigma_u(3b_2)$ contribute negatively.

For O₂⁻ placed in various orthorhombic environments,²⁰ ESR studies have found that $g_{xx} \approx g_e$ and $g_{yy} \gg g_{zz} > g_e$ (typically, Δg_{yy} is 200 000 to 500 000 ppm). In a simplified two-state model,²⁰ the Δg values for X²A₂ are given by the same expressions presented for the oxides MO, namely

$$\Delta g_{xx} = g_{xx} - g_{e} \approx 0$$
$$\Delta g_{yy} = g_{yy} - g_{e} \approx 2\lambda/\Delta E$$

where λ again is the spin-orbit coupling constant of O and $\Delta E = E(1^2B_2) - E(X^2A_2)$. The large Δg_{yy} value is due to the small ΔE between the split components of $X^2\Pi_g$, which depends strongly on the perturbing crystal field. For Δg_{zz} , a similar expression as for Δg_{yy} has been derived, with ΔE assumed to be the excitation energy of ${}^2A_1(1^2\Sigma_g^+)$.

(2) O_2^- in LiO₂ and NaO₂. We consider now the superoxides MO₂ at the linear ($C_{\infty v}$) and bent (C_{2v}) geometries. The $D_{\infty h}$ configurations in Table 3 can be converted to $C_{\infty v}$ by substituting $2\sigma_g$, $1\pi_u$, $1\pi_g$, and $2\sigma_u$ with 3σ , 1π , 2π , and 4σ , respectively.

After minor changes, the ideas presented above for O_2^- in a $C_{2\nu}$ crystal field can as well be applied to O_2^- in MO₂. First, for linear MOO the distinction between g and u is not longer valid, and therefore, the number of excited states contributing

to g_{\perp} increases (from those underlined in Table 3) by the corresponding u-states $1\pi_g \rightarrow 2\sigma_u \ (2\pi \rightarrow 4\sigma)$. However, the fact that a magnetic coupling g - u is not allowed should hold approximately in the lower symmetry (i.e., small contributions to Δg due to u states). Second, the number of low-lying excited states of MO₂ is larger than those given in Table 3 for free O_2^- , as the counterion Li⁺ or Na⁺ has four valence MOs, namely two a_1 , one b_1 and one b_2 (neglecting 3d AOs for Na⁺). The analysis above holds for the X^2A_2 ground state of MO₂, with a π -type character. The 1²B₂ excited state, formally a σ -type species, should have a similar magnetic coupling as the ground state since both are split components of ${}^{2}\Pi(M^{+}O_{2}^{-})$. It is therefore of interest to study the g-shifts of 1^2B_2 as well. For $1^{2}B_{2}$, the xx, yy, and zz components of Δg are governed by the coupling with ${}^{2}A_{1}$, ${}^{2}A_{2}$, and ${}^{2}B_{1}$ states, respectively. While $\Delta g_{\nu\nu}$ again depends mostly on the $X^2A_2/1^2B_2$ coupling and thus remains the largest g shift, the roles of the other two components have to be exchanged, i.e., $\Delta g_{zz} \approx 0$ and $\Delta g_{yy} \gg \Delta g_{xx}$. The Δg_{yy} value of $1^2 B_2$ is negative due to a negative ΔE .

ROHF Δg Values. The uncorrelated Δg_{xx} , Δg_{yy} , Δg_{zz} (in ppm) for X²A₂ of LiO₂ are respectively, -385, 44 818, and 7803 (corresponding first-order contributions: -384, -281, and -283 ppm). For X²A₂ of NaO₂, the values are -426, 71 124, and 7843 (first-order: -424, -323, and -283 ppm). The SOS expansions of both radicals, which only contain one-open-shell singly excited states, comprise 36 terms of A₁, 12 of B₁, 27 of B₂, and 8 of A₂ symmetry.

First-order contributions, which are dominated by the isotropic Δg_{RMC} term (\approx -290 ppm), only play a role for the small Δg component (that having the same direction as the SOMO). They become relatively important, however, for small radicals (e.g., H_2^{-} ;⁴² LiH⁺, BeH²⁺, BeH, BH⁺;⁴³ Li₂⁺, Li₂⁻, Be₂^{+ 44}).

The average $\langle \Delta g \rangle$, also known as Δg_{iso} , is 17412 ppm for LiO₂ and 26180 ppm for NaO₂; i.e., it increases by about 50% when replacing Li by Na. The data above indicate that the Δg_{xx} and Δg_{zz} components are practically the same for both radicals (\approx -400 and 7800 ppm), whereas Δg_{yy} increases by about 60% between LiO₂ and NaO₂. As shown later, the major source of difference between the Δg_{yy} values lies in the ΔE 's.

MRCI Δg Values. The second-order MRCI contributions to Δg are collected in Tables 4 and 5. Depending on the convergence pattern, from 8 to 10 excited states were included in the SOS expansions. In general, one or two states are the main contributors to the large g shifts.

For the *g*-shifts of LiO₂ (Table 4), the correlated results corroborate the ROHF data, namely $\Delta g_{xx} \approx 0$, $\Delta g_{yy} \gg \Delta g_{zz}$. The SOS expansion for Δg_{yy} has a large contribution due to 1²B₂, and essentially none for the other states, justifying the two-state coupling model.²⁰ The small deformation of the π_g components 1a₂ and 2b₂ is evident by a *L* value close to 1.0 (Table 4). Since the energy difference is a critical parameter for evaluating Δg , we have compared our calculated adiabatic T_e(1²B₂) value with that reported in a more extensive treatment.³¹ Our CI value is too high by 0.056 eV. Adjusting the vertical ΔE by the same amount, Δg_{yy} increases by about 9% (Table 4, footnote *c*).

As mentioned earlier, not one but two ²A₁ states give large contributions to Δg_{zz} . For LiO₂, both states are energetically close (5.531 and 5.825 eV); the corresponding SO and *L* matrix elements are also of a comparable magnitude (\approx 52 cm⁻¹ and 0.82 au, respectively). The two ²A₁ states derive from 1² Π_u and 1² Σ_g^+ of O₂⁻ (Table 3).

The second-order Δg values have also been calculated for the 1²B₂ state of LiO₂, at the equilibrium geometry given in ref

TABLE 4: MRCI Second-Order Contributions to the g Shifts of the X^2A_2 State of LiO_2^a

					$\Delta g(20)^b$
		$\Delta E (\mathrm{eV})$	$SO(cm^{-1})$	L (au)	(ppm)
$^{2}\mathrm{B}_{1}\left(\Delta g_{xx}\right)$	1	4.037	2.577	0.2595	84
	2	4.603	3.635	-0.1380	-56
	3	4.714	0.597	-0.0811	-5
	4	5.528	-0.158	-0.0899	1
	5	5.543	1.973	0.1143	21
	6	6.546	1.870	0.0752	11
	7	7.128	0.645	0.0091	0.5
	8	7.406	0.762	0.0051	0.5
					57
$^{2}\mathrm{B}_{2}\left(\Delta g_{yy}\right)$	1	0.760	-79.078	-0.9992	52957^{c}
	2	5.332	-10.026	0.0214	-20
	3	6.930	-1.569	0.0241	-7
	4	7.365	0.097	0.0299	0
	5	7.588	8.872	-0.0155	-9
	6	9.021	-0.812	0.0344	-2
	7	9.990	3.740	-0.0330	-6
	8	10.376	-0.851	0.0190	-1
					52912
$^{2}A_{1} \left(\Delta g_{zz} \right)$	1	4.699	-0.035	-0.1954	1
	2	4.850	0.439	0.1710	8
	3	5.531	52.432	0.8380	4047
	4	5.781	5.583	-0.2102	-103
	5	5.801	0.346	-0.0986	-3
	6	5.825	-51.821	-0.8033	3640
	7	6.708	0.375	0.2036	6
	8	7.645	1.048	-0.0935	-6
					7590

^{*a*} Geometry from ref 31. ^{*b*} Total contribution in boldface. ^{*c*} Using $\Delta E = 0.704 \text{ eV}$, $\Delta g_{yy} = 57 162 \text{ ppm}$ (**57 117** ppm, total).

TABLE 5: MRCI Second-Order Contributions to the g Shifts of the X^2A_2 State of NaO_2^a

					$\Delta g(20)^b$
		$\Delta E ({\rm eV})$	SO (cm ⁻¹)	L (au)	(ppm)
$^{2}\mathrm{B}_{1}\left(\Delta g_{xx}\right)$	1	2.702	-3.160	-0.3230	192
	2	3.951	-4.452	0.2407	-140
	3	4.451	1.312	0.1454	22
	4	4.680	2.911	0.2067	65
	5	4.764	1.461	0.0697	11
	6	5.278	0.306	0.1264	4
	7	5.673	0.629	-0.0260	-1
	8	5.696	2.229	-0.0313	-6
	9	7.274	-0.078	-0.0639	0
					82
$^{2}\mathrm{B}_{2}\left(\Delta g_{yy}\right)$	1	0.439	-79.250	-1.0067	92523 ^c
	2	4.822	-6.495	-0.0372	26
	3	6.524	1.743	-0.1079	-15
	4	6.729	3.378	-0.0497	-13
	5	8.331	-0.635	0.1514	-6
	6	8.722	-19.683	-0.0991	114
	7	9.406	-0.251	0.0274	0
	8	10.680	-4.771	-0.0524	12
	9	11.195	-1.472	-0.0673	5
					92646
$^{2}A_{1} (\Delta g_{zz})$	1	3.510	-2.247	0.1265	-41
_	2	3.524	8.262	0.2666	318
	3	5.079	-1.628	0.0832	-14
	4	5.244	33.585	0.4595	1499
	5	5.436	3.097	-0.1114	-32
	6	6.332	-64.248	-1.0557	5456
	7	6.848	0.263	-0.0262	-1
	8	7.218	-0.511	0.0895	-3
	9	8.052	-0.762	-0.0569	3
					7185

^{*a*} Geometry from ref 31. ^{*b*} Total contribution in boldface. ^{*c*} Using $\Delta E = 0.367 \text{ eV}$, $\Delta g_{yy} = 110 675 \text{ ppm}$ (**110 798** ppm, total).

31. The corresponding contributions (in ppm) to Δg_{xx} , Δg_{yy} , and Δg_{zz} are 8685, -61 454, and 59. After substituting *xx* by

TABLE 6: ROHF and MRCI Second-Order Contributions to Δg_{yy} for the Coupling X²A₂/1²B₂, and to Δg_{zz} for the Coupling X²A₂/2A₁ of LiO₂ and NaO₂^{*a*}

Δg_{yy}		X ² A ₂ ^b ROHF	MRCI	$1^2 B_2^c$ ROHF	MRCI
LiO ₂	ΔE	0.930	0.704	-0.439	-0.648
	SO	85.136	79.078	84.720	79.061
	L	0.996	0.999	0.999	0.999
	Δg_{yy}	45191	57162	-95730	-62073
NaO_2	ΔE	0.595	0.367	-0.144	-0.348
	SO	85.550	79.250	85.304	79.110
	L	1.002	1.007	1.006	1.007
	Δg_{yy}	71484	110731	-296261	-116758
		$X^2A_2^{b,d}$			
Δg	zz	$X^2A_2^{b,d}$ ROHF	MRCI1	MRCI2	total CI
Δg LiO ₂	ΔE	X ² A ₂ ^{b,d} ROHF 5.333	MRCI1 5.531	MRCI2 5.825	total CI
$\frac{\Delta g}{\text{LiO}_2}$	$\frac{\Delta E}{SO}$	X ² A ₂ ^{b,d} ROHF 5.333 76.779	MRCI1 5.531 52.432	MRCI2 5.825 -51.821	total CI
Δg LiO ₂	ΔE SO L	X ² A ₂ ^{b,d} ROHF 5.333 76.779 1.141	MRCI1 5.531 52.432 0.838	MRCI2 5.825 -51.821 -0.803	total CI
Δg LiO ₂	$ \frac{\Delta E}{SO} L \Delta g_{zz} $	X ² A ₂ ^{b,d} ROHF 5.333 76.779 1.141 8149	MRCI1 5.531 52.432 0.838 4046	MRCI2 5.825 -51.821 -0.803 3640	total CI 7686
$\frac{\Delta g}{\text{LiO}_2}$ NaO ₂	$\begin{array}{c} \overline{\Delta E} \\ SO \\ L \\ \Delta g_{zz} \\ \Delta E \end{array}$	X ² A ₂ ^{b,d} ROHF 5.333 76.779 1.141 8149 5.237	MRCI1 5.531 52.432 0.838 4046 5.244	MRCI2 5.825 -51.821 -0.803 3640 6.332	total CI 7686
$\frac{\Delta g}{\text{LiO}_2}$ NaO ₂	$ \frac{\Delta E}{SO} L \Delta g_{zz} \Delta E SO SO $	X ² A ₂ ^{b,d} ROHF 5.333 76.779 1.141 8149 5.237 75.977	MRCI1 5.531 52.432 0.838 4046 5.244 33.585	MRCI2 5.825 -51.821 -0.803 3640 6.332 -64.248	total CI 7686
$\frac{\Delta g}{\text{LiO}_2}$ NaO ₂	$\begin{array}{c} zz \\ \Delta E \\ SO \\ L \\ \Delta g_{zz} \\ \Delta E \\ SO \\ L \end{array}$	X ² A ₂ ^{b,d} ROHF 5.333 76.779 1.141 8149 5.237 75.977 1.145	MRCI1 5.531 52.432 0.838 4046 5.244 33.585 0.460	MRCI2 5.825 -51.821 -0.803 3640 6.332 -64.248 -1.056	total CI 7686

^{*a*} ΔE in eV, SO in cm⁻¹, *L* in au, and Δg in ppm. ^{*b*} At its equilibrium geometry (ref 31), and using X²A₂ SCF MOs. ^{*c*} At its equilibrium geometry (ref 31), and using 1²B₂ SCF MOs. ^{*d*} Two ²A₁ states at the CI level, given as MRCI1 and MRCI2. See text.

zz, the SOS expansions associated with the *g*-shifts of $1^{2}B_{2}$ of LiO₂ exhibit similar trends as observed for $X^{2}A_{2}$ (Table 4). Since $|\Delta E|$ at the $1^{2}B_{2}$ geometry is necessarily smaller than for $X^{2}A_{2}$ at equilibrium, $|\Delta g_{yy}|$ is consequently larger for the excited state.

The data in Table 5 for NaO₂(X²A₂) follow the same trends as those in Table 4 for LiO₂(X²A₂), i.e., small Δg_{xx} of 82 ppm, large Δg_{yy} of 92 646 ppm (governed by the coupling with 1²B₂), and a medium Δg_{zz} component (7185 ppm) with two excited states dominating the SOS expansion. Lowering the vertical $\Delta E(1^2B_2)$ value for NaO₂ by 0.072 eV after comparing with Bauschlicher's data,³¹ Δg_{yy} increases by about 21% (Table 5, footnote *c*). The g_{yy} shift of NaO₂ is about twice the value for LiO₂, mainly because $\Delta E(NaO_2) \approx (1/2) \Delta E(LiO_2)$.

The same behavior as for $1^{2}B_{2}$ of LiO₂ is observed for that state of NaO₂, with second-order contributions $\Delta g_{yy} = -116575$ ppm, $\Delta g_{xx} = 8213$ ppm, and $\Delta g_{zz} \approx 101$ ppm. The major difference lies in the magnitude of Δg_{yy} , which is about two times larger in the Na compound.

ROHF vs **MRCI** Δg **Values.** Table 6 collects the dominant second-order ROHF and MRCI contributions to the in-plane components Δg_{yy} and Δg_{zz} .

The Δg_{yy} value relative to X²A₂ or 1²B₂ is governed by the coupling X²A₂/1²B₂. For X²A₂, correlation *increases* Δg_{yy} by 26% for LiO₂ and by 55% for NaO₂; for 1²B₂, correlation *decreases* $|\Delta g_{yy}|$ by 35 and 61%, respectively. At each level of treatment, the magnitude of Δg_{yy} *increases* in passing from LiO₂ to NaO₂.

The $\langle X^2A_2|H_{SO}|1^2B_2\rangle$ values for the two states of LiO₂ and NaO₂ are remarkably uniform, with a median of 85.2 ± 0.5 cm⁻¹ (ROHF) or 79.1 ± 0.1 cm⁻¹ (MRCI). Also, $\langle X^2A_2|L_y|1^2B_2\rangle$ has a value of about 1.0 au for both radicals. The similarity between the SO and *L* matrix elements shows that the structure of O₂⁻⁻ is nearly independent of the counterion.

It follows from the discussion above that the major difference between the Δg_{yy} values of LiO₂ and NaO₂ lies in the ΔE 's. Please note that the present "ROHF" excitation energies are not obtained from two independent SCF calculations but as difference of determinantal energies evaluated using the same set of MOs (e.g., those from 1²B₂ when dealing with this excited

TABLE 7: Best Δg Data (in ppm) Calculated in This Work for LiO₂ and NaO₂

$\Delta g \text{ data}^a$		$LiO_2(X^2A_2)$	$LiO_2(1^2B_2)$	$NaO_2(X^2A_2)$	$NaO_2(1^2B_2)$
Δg_{xx}	1st	-430	-346	-475	-379
-	2nd	57	8685	82	8213
	total	-373	8339	-393	7834
Δg_{yy}	1st	-315	-319	-362	-352
	2nd	57117	-61454	110854	-116575
	total	56800	-61773	110492	-116927
Δg_{zz}	1st	-317	-405	-317	-395
0	2nd	7590	59	7185	101
	total	7273	-346	6868	-294
$\langle \Delta g \rangle$		21233	-17927	38989	-36462
$\langle g \rangle$		2.023552	1.984392	2.041308	1.965857

^{*a*} 1st: corrected values (by 12%) from the corresponding ROHF firstorder terms (see text); 2nd: second-order MRCI (best values from Tables 4 and 5).

state). For this reason, the two ROHF values for $|\Delta E|$ of LiO₂ (Δg_{yy}), for example, lie too much apart (0.930 vs 0.439 eV), in contradiction with the fact that the equilibrium geometries of X²A₂ and 1²B₂ are quite alike. With the correlated ΔE 's, the discrepancy is obviously lifted (0.704 vs 0.648 eV). The same picture holds for NaO₂.

The ΔE 's of LiO₂ are about twice those of NaO₂. As the equilibrium bond distance R(Li-O) is shorter than R(Na-O), the Coulombic interaction O₂⁻...M⁺ is stronger in LiO₂, thus resulting in a higher ΔE .

The description of Δg_{zz} for X²A₂ is slightly more complicated than for the Δg_{yy} component. In detail, at the ROHF level only one state, ²A₁(2a₁ \rightarrow 1a₂) correlating with 1²Σ⁺ of linear MO₂, contributes to Δg_{zz} . The corresponding couplings X²A₂/²A₁ in LiO₂ and NaO₂ have average values of 5.28 ± 0.05 eV for ΔE , 76.4 ± 0.4 cm⁻¹ for SO, 1.14 au for *L*, and 8194 ± 45 ppm for Δg_{zz} . These averages lie rather close to ROHF values for the X²\Pi_g/1²Σ_g⁺ coupling of free O₂⁻: 4.81 eV, 75.2 cm⁻¹, 1.16 au, and 9248 ppm, respectively (Table 2).

The CI treatment finds ${}^{2}A_{1}(3a_{1} \rightarrow 1a_{2})$ to be also of relevance for $\Delta g_{zz}(X^{2}A_{2})$; this ${}^{2}A_{1}$ state correlates with ${}^{1}\Pi$. As seen in Table 6, for each ${}^{2}A_{1}$ state of LiO₂ the corresponding values of ΔE , SO, and *L* are of similar magnitude, thus resulting in equivalent contributions to Δg_{zz} (4046 and 3640 ppm). For NaO₂, however, one notes a clear tendency toward a stronger coupling with the higher ${}^{2}A_{1}$ state, as indicated by its contribution to Δg_{zz} of 5456 ppm versus 1499 ppm from the lowest ${}^{2}A_{1}$. Such a less severe ${}^{1}\Sigma^{+}/{}^{2}\Pi$ mixing in NaO₂ than in LiO₂ is most probably due to the larger *R*(Na–O) (i.e., a weaker Na⁺-O₂⁻ interaction).

Table 7 summarizes our best theoretical results for the *g* shifts of LiO₂ and NaO₂. The total value of each Δg component combines first-order (ROHF) and second-order (MRCI) terms. As shown by Bündgen et al.⁴⁵ for the radicals O₂, SO, and NO, correlated first-order terms are in magnitude about 12% larger than the uncorrelated values. Assuming that the same trend holds for the superoxides, the first-order contributions given in Table 7 have been increased by 12% relative to the ROHF data.

The small Δg components (Δg_{xx} of X^2A_2 and Δg_{zz} of 1^2B_2), which are governed by first-order terms, vary from -300 to -400 ppm. Next in magnitude one finds Δg_{zz} of X^2A_2 and Δg_{xx} of 1^2B_2 , ranging from 6900 to 8400 ppm. It is seen that the coupling $X^2\Pi_g/1^2\Sigma_g^+$ of free O_2^- resulting in $\Delta g_{\perp} \approx 7000$ ppm (Table 2) is more or less preserved in both LiO₂ and NaO₂ for the equivalent couplings of X^2A_2 or 1^2B_2 with the ²A₁ manifold.

For both electronic states, the largest g shift is assigned to Δg_{yy} (\approx 57 000 ppm for LiO₂ and \approx 110 000 ppm for NaO₂, both

TABLE 8: Experimental Δg Values (ppm) and Total Magnetic Moments μ_m (in Bohr magnetons) of Alkali Superoxides MO₂ (X²A₂), and the Best Theoretical Results for LiO₂ and NaO₂ from This Work

Δg_{xx}	Δg_{yy}	Δg_{zz}	$\langle \Delta g \rangle$	$\mu_{ m m}$
-900	65500	5800	23467	1.7546
-400	56900	6100	20867	1.7523
-300	55600	7100	20800	1.7522
600	108900	4000	37833	1.7673
-100	108300	5200	37800	1.7673
-1600	116100	4500	39667	1.7690
-2700	120400	4600	40767	1.7700
-1000	104600	4600	36067	1.7658
-373	56800	7273	21233	1.7526
-393	110492	6868	38989	1.7684
	$\begin{array}{r} \Delta g_{xx} \\ -900 \\ -400 \\ -300 \\ 600 \\ -100 \\ -1600 \\ -2700 \\ -1000 \\ -373 \\ -393 \end{array}$	$\begin{array}{c cccc} \Delta g_{xx} & \Delta g_{yy} \\ \hline -900 & 65500 \\ -400 & 56900 \\ -300 & 55600 \\ 600 & 108900 \\ -100 & 108300 \\ -1600 & 116100 \\ -2700 & 120400 \\ -1000 & 104600 \\ -373 & 56800 \\ -393 & 110492 \\ \end{array}$	$\begin{array}{c ccccc} \Delta g_{xx} & \Delta g_{yy} & \Delta g_{zz} \\ \hline -900 & 65500 & 5800 \\ -400 & 56900 & 6100 \\ -300 & 55600 & 7100 \\ 600 & 108900 & 4000 \\ -100 & 108300 & 5200 \\ -1600 & 116100 & 4500 \\ -2700 & 120400 & 4600 \\ -2700 & 120400 & 4600 \\ -373 & 56800 & 7273 \\ -393 & 110492 & 6868 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

^{*a*} Lindsay and Garland (1987), ref 23. ^{*b*} Lindsay et al. (1974), ref 23. ^{*c*} Adrian et al., ref 22. ^{*d*} Best results from this work (cf. Table 7).

in their ground states). Since the energetically close-lying $1a_2$ and $2b_2$ MO's have similar charge-density distributions, the paramagnetic current density is optimal for rotation about the y(O-O) axis.

Comparison with Experimental Results

O⁻, **LiO**, and **NaO**. See ref 20 for detailed information on the experimental *g* shifts of adsorbed O⁻ ions. Experimentalists have interpreted the *g* shifts assuming that the interaction of O⁻ with the surface leads to the diatomic state ${}^{2}\Sigma^{+}(\sigma\pi^{4})$ of O⁻ being more stable than ${}^{2}\Pi(\sigma^{2}\pi^{3})$. Most of the experimental Δg_{\perp} values (component perpendicular to the bond O surface) for O⁻ adsorbed on alkali halides vary from 224 000 to 300 000 ppm. The average energy splitting $p\sigma$ -p π , calculated as $\Delta E = 2\lambda/\Delta g_{\perp}$, is about 0.1 eV.

No experimental g shifts are available for LiO and NaO since both have a X² Π ground state. Our theoretical values of $|\Delta g_{\perp}|$ and $|\Delta E|$ for 1² Σ^+ of LiO (0.155 500 ppm and 0.19 eV) and NaO (0.261 000 ppm and 0.11 eV) resemble those for O⁻ adsorbed on alkali halide surfaces.

O₂⁻, **LiO**₂, and **NaO**₂. Experiments for O₂⁻ in ionic lattices²¹ find Δg_{yy} values (component parallel to the O–O bond) from $\approx 300\ 000\ to\ 500\ 000\ ppm$, corresponding to ΔE 's of less than 0.1 eV for the splitting of X² Π_g (O₂⁻). No experimental data are available for Δg_{zz} , but our calculations on free O₂⁻ (Table 2) suggest that this component should lie around 7000 ppm.

In Table 8 Δg values are given for MO₂ radicals (M = Li to Cs) isolated in inert matrices. The magnitude of the magnetic moment has been calculated as $|\mu_{\rm m}| = \frac{1}{2} \sqrt{\Sigma g_{ii}^2}$ (in Bohr magnetons) using experimental g_{ii} 's. Our best theoretical results for the Δg values and $|\mu_{\rm m}|$ of the Li and Na systems are displayed at the bottom of this table.

The Δg_{yy} values for LiO₂ in Ar and Kr matrices are quite similar, with an average of 56 250 ± 650 ppm. However, Δg_{yy} for LiO₂ in solid N₂ is about 9250 ppm (16%) higher, indicating a significantly larger host-matrix interaction than in rare-gas matrices.

We suspect that Δg_{yy} measured for LiO₂/N₂ might have been tainted by an interaction between Li and N₂. According to MP2/ 611+G* calculations by Ramondo et al.,⁴⁶ the radical LiN₂ has a $C_{2\nu}$ equilibrium geometry, like LiO₂. The X²Π_g(1 π_u^4 1 π_g) state of linear Li–N–N splits into X²B₂ and 1²A₂, the latter lying slightly higher. Therefore, its Δg_{yy} value is governed by the magnetic coupling X²B₂/1²A₂, in a similar fashion as it does for the alkali MO₂'s.

The net charges for Li, e.g., +0.46 for LiN₂ (X²B₂) and +0.53 for LiO₂ (1²B₂), indicate a similar amount of electronic charge

TABLE 9: ROHF and MRCI Values of $K = \langle SO \rangle \cdot \langle L \rangle / \hbar$ (in eV) for Oxides, Superoxides, and Ozonides of Li and Na, and the Free Ions O_2^{-a} and O_3^{-a}

	-	-			
radical	ROHF	MRCI	radical ^b	ROHF	MRCI
LiO $(1^2\Sigma^+)$	0.034	0.029	$NaO_2 (X^2A_2)$	0.044	0.041
NaO $(1^2\Sigma^+)$	0.035	0.029	$NaO_2 (1^2B_2)$	0.044	0.041
$O_2^{-}(1^2\Sigma_g^+)$	0.044	0.044	$O_3^{-}(X^2B_1)$	0.035	0.038
$LiO_2 (X^2 A_2)$	0.043	0.040	$LiO_3(X^2B_1)$	0.033	0.038
$LiO_2(1^2B_2)$	0.043	0.040	$NaO_{3}(X^{2}B_{1})$	0.035	0.037

^{*a*} For LiO and NaO, data for coupling $X^2\Pi/l^2\Sigma^+(\Delta g_{\perp})$; for O₂⁻, coupling $X^2\Pi_g/l^2\Sigma_g^+(\Delta g_{\perp})$; for LiO₂ and NaO₂, coupling $X^2\Lambda_{2/}$ $l^2B_2(\Delta g_{yy})$; for O₃⁻ and O₃M, coupling $X^2B_1/l^2A_1(\Delta g_{yy})$. ^{*b*} Data for O₃⁻ and MO₃ taken from Bruna and Grein (ref 13).

density being transferred from Li to the diatomics O_2 and N_2 .⁴⁶ The bond strengths of the Li–N and L–O bonds were found to be similar.

As pointed out earlier, the SO and *L* values related to Δg_{yy} of LiO₂ and NaO₂ are essentially identical. Since the observed Δg_{yy} increases in passing from LiO₂/rare gas to LiO₂/N₂, one can infer that ΔE in the N₂ matrix is somewhat smaller. This would mean that Li⁺ in the presence of both O₂(-) and N₂(-) is less effective in splitting X²Π_g(O₂⁻) than in the presence of O₂⁻ only (as in rare-gas matrices). It would be of interest to study NaO₂ in solid N₂ to determine whether Δg_{yy} is higher in NaO₂/inert gas).

The experimental Δg_{zz} values of LiO₂ lie in the 5800-7100 ppm range. The Δg_{xx} component is found to be negative in all cases, with an average of -530 ppm.

The *g*-shifts for NaO₂/Ar were determined by Adrian et al.,²² and for NaO₂/Kr by Lindsay et al.²³ Both sets of Δg_{yy} and Δg_{zz} data are essentially equivalent; however, a positive $\Delta g_{xx} = 600$ ppm for O₂Na/Ar does not agree with the general trend (Table 9). The Δg_{yy} component of NaO₂ (108 600 ppm) is about twice that of LiO₂, in line with a decrease in $\Delta E(X^2A_2 - 1^2B_2)$ by about one-half between both compounds.^{15,16,31}

The average $\langle \Delta g \rangle$ of LiO₂ or NaO₂ appears to be independent of the host, at least for Ar and Kr matrices. For the heavier systems KO₂, RbO₂, and CsO₂, the Δg values are similar to those of NaO₂, except for Δg_{xx} , which increases slightly in magnitude.

The calculated Δg_{yy} components (about 57 000 ppm for LiO₂ and 110 500 ppm for NaO₂) agree very well with experimental data cited in Table 8 for rare-gas matrices. The theoretical g_{zz} shift (about 7300 ppm for LiO₂ and 6900 ppm for NaO₂) reproduces the value measured for LiO₂ but it is about 1700 ppm too large for NaO₂. In line with experimental observations, Δg_{xx} is calculated to be small and negative (about -400 ppm for both radicals). Compared to the rather pronounced differences seen in the *g* shifts, the magnetic moment values (Table 8) are quite insensitive parameters, varying from 1.752 to 1.755 $\mu_{\rm B}$ for LiO₂, and from 1.766 to 1.770 $\mu_{\rm B}$ for NaO₂ to CsO₂. For a free electron, $|\boldsymbol{\mu}_{\rm m}| = 1.7341 \ \mu_{\rm B}$.

Summary and Concluding Remarks

The paramagnetic behavior of KO₂, discovered by Neuman⁴⁷ in 1934, was the first experimental proof for the existence of the O_2^- radical. Although numerous experimental studies have been carried out on O_2^- since then, we are unaware of any ab initio study dealing with the magnetic properties of O_2^- and simple superoxides. To fill this gap, the electron-spin magnetic moments (as parametrized by the *g* shifts) of LiO₂ and NaO₂ have been here studied theoretically. Details of the vertical spectra of both radicals are found elsewhere.⁴⁸ Complementary calculations were carried out as well to determine the magnetic

coupling parameters (SO, *L*, and ΔE) for isolated O₂⁻ and the oxides LiO and NaO. Uncorrelated (ROHF) and correlated (MRCI) wave functions, in conjunction with a perturbative approach complete to second-order of the Breit–Pauli Hamiltonian, have been used.

The superoxides MO₂ are π -radicals, with the SOMO being ascribed to the out-of-plane component a_2 of $\pi_g(O_2^-)$. The energetically close-lying component b_2 has a similar spatial charge-density distribution. This results in an optimal paramagnetic current density due to rotation about the y(O-O) axis, leading to a large Δg_{yy} value for both X²A₂ and 1²B₂.

Our theoretical results for (gas phase) LiO₂ and NaO₂ reproduce the experimental ones reasonably well. For the ground-state X²A₂, the MRCI results for Δg_{xx} , Δg_{yy} , Δg_{zz} (in ppm) are -373 (-350), 56 800 (56 250), 7273 (6600) for LiO₂; and -393 (150), 110 492 (108 600), 6868 (4600) for NaO₂, with the experimental numbers given in parentheses (average from Ar and Kr matrices). The theoretical averages $\langle \Delta g \rangle$ deviate from the average experimental values by about 400 ppm (2%) for LiO₂ and 1200 ppm (3%) for NaO₂.

As shown below, our calculations on LiO₂ and NaO₂ confirm the two-state model used by experimentalists for Δg_{yy} , which is calculated to be inversely proportional to the energy splitting between X²A₂ and 1²B₂. Experimental studies in rare-gas matrices found Δg_{yy} to lie around 56 000 ppm for LiO₂, but to be roughly 2 times larger for NaO₂ to CsO₂ (from 105 000 to 120 000 ppm). This trend indicates that Li⁺ is a stronger perturber of O₂⁻ than the other alkali cations M⁺, by the simple reason that the M–O distance is shortest for LiO₂. The stronger the metal–oxygen interaction the larger the splitting ΔE (the smaller the g_{yy} shift).

In the following, we focus on the coupling between the two lowest states of LiO₂ and NaO₂. According to the MRCI data for the X²A₂ states, a ratio $\Delta g_{yy}(NaO_2)/\Delta g_{yy}(LiO_2)$ of 1.94 lies very close to 1.92 calculated for the quotient $\Delta E(LiO_2)/\Delta E(NaO_2)$. For the 1²B₂ states, the corresponding (MRCI) ratios are 1.88 and 1.86. In other words, the "internal" magnetic coupling of O₂⁻, as measured by SO and *L*, remains unchanged in passing from LiO₂ to NaO₂ (and probably, for heavier alkali MO₂ as well). The only mentionable difference relates to the "strength" of the perturbing field exerted by the countercation, as reflected in ΔE , which in turn depends on R(M-O). This feature allows to separate the magnetic coupling into a part common to all members of a given family of compounds MO₂ (i.e., SO and *L*), and another part characteristic of each of its members (ΔE).

As stated earlier, the simple relation $\Delta g \approx 2\lambda/\Delta E$ has been used by experimentalists to estimate ΔE from a knowledge of Δg and λ , as, for example, Δg_{\perp} for O⁻ adsorbed on surfaces, and Δg_{yy} for LiO₂ and NaO₂. We have found that the Δg_{yy} values of the ozonides also satisfy this equation. It is therefore of interest to compare the experimental values of 2λ with the equivalent term $\langle SO \rangle \cdot \langle L \rangle$ provided by theory.

In Table 9 we summarize the ROHF and MRCI values (in eV) for the product $K = \langle SO \rangle^{*} \langle L \rangle / \hbar$ as calculated here for M–O, MO₂, and O₂⁻, and for MO₃ and O₃⁻.¹³ The collected data refer to the largest *g*-shift of each system, which involves the coupling between two close-lying states. In detail, the coupling involves $X^{2}\Pi/1^{2}\Sigma^{+}$ for the oxides O⁻(²P)M⁺, $X^{2}A_{2}/1^{2}B_{2}$ for the super-oxides O₂⁻(²Π_g)M⁺ and $X^{2}B_{1}/1^{2}A_{1}$ for the ozonides O₃⁻(²Π_u)M⁺. In a simple approximation, the corresponding Δg components are evaluated as $\Delta g = K/\Delta E$.

For each family of compounds, the *K* parameter is found to be internally consistent, again pointing out that the counterion

has only little influence on the SO and L parameters of O_n^- (n = 1, 2, 3). At the MRCI level, most of the K data lie in the range 0.029–0.041 eV. Recalling that K is approximately equal to 2λ , the effective spin-orbit constant λ at the CI level ranges from 0.015 to 0.021 eV. The ROHF values of *K* are 10-20% larger, from 0.033 to 0.044 eV. The experimental λ is 0.0186 eV for O and 0.0236 eV for O⁻ (see Zeller and Känzig, ref 21). On the other hand, Che and Tench²⁰ used $\lambda = 0.014$ eV to fit the g data from different experimental studies.

Codeposition at low temperatures of a mixture Li/O₂ in an excess of N₂, leading to the formation of LiO₂ in a N₂ matrix, might lead to somewhat anomalous g factors in the ESR spectrum when compared with that in rare-gas matrices, as Li is able to interact with both O2 and N2. Additional experimental studies on the g shifts of alkali nitrides MN_2 , as well as for other superoxides MO₂ in N₂ matrices, are desirable.

A general discussion on the trends expected for the g shifts of MX₂ radicals (with M = Li, Na, and $X_2 = C_2$, N₂, O₂, F₂) can be found elsewhere.49

Acknowledgment. The authors thank NSERC (Canada) for financial support.

References and Notes

(1) Harriman, J. E. Theoretical Foundations of Electron Spin Resonance; Academic Press: New York, 1978.

(2) Weltner, W. Magnetic Atoms and Molecules; Dover: New York, 1983.

(3) Lushington, G. H. Ph.D. Thesis, University of New Brunswick, Fredericton, New Brunswick, Canada, 1996.

(4) Lushington, G. H.; Grein, F. J. Chem. Phys. 1997, 106, 3292.

- (5) Schreckenbach, G.; Ziegler, T. J. Phys. Chem. A 1997, 101, 3388. (6) van Lenthe, E.; van der Avoird, Ad.; Wormer, P. E. S. J. Chem.
- Phys. 1998, 108, 4783. (7) Vahtras, O.; Minaev, B.; Ågren, H. Chem. Phys. Lett. 1997, 281, 186.
 - (8) Jayatilaka, D. J. Chem. Phys. 1998, 108, 7587.
 - (9) Lushington, G. H.; Grein, F. Int. J. Quantum Chem. 1996, 60, 1679.
 - (10) Lushington, G. H.; Grein, F. Theor. Chim. Acta 1996, 93, 259.
- (11) Bruna, P. J.; Lushington, G. H.; Grein, F. Chem. Phys. 1997, 225, 1.
- (12) Bruna, P. J.; Grein, F. J. Phys. Chem. A 1998, 102, 3141.
- (13) Bruna, P. J.; Grein, F. J. Chem. Phys. 1998, 109, 9493.
- (14) Lushington, G. H.; Bündgen, P.; Grein, F. Int. J. Quantum Chem. **1995**, *55*, 377.
- (15) Allen, W. D.; Horner, D. A.; Dekock, R. L.; Remington, R.B.; Schaefer H. F. Chem. Phys. 1989, 133, 11.
- (16) Horner, D. A.; Allen, W. D.; Császár, A. G.; Schaefer, H. F. Chem. Phys. Lett. 1991, 186, 346.
- (17) Travers, M. J.; Cowles, D. C.; Ellison, G. B. Chem. Phys. Lett. 1989, 164, 449.
- (18) Azria, R.; Parenteau, L.; Sanche, L. Phys. Rev. Lett. 1987, 59, 638. (19) Hashemi, R.; Illenberger, E. Chem. Phys. Lett. 1991, 187, 623.
- Jaffke, T.; Meinke, M.; Hashemi, R.; Christophorou, L. G.; Illenberger, E. Chem. Phys. Lett. 1992, 193, 62, and reference therein.

(20) Che, M.; Tench, A. J. Adv. Catal. 1982, 31, 78; 1983, 32, 1.

(21) Känzig, W.; Cohen, M. H. Phys. Rev. Lett. 1959, 3, 509. Zeller,

H. R.; Känzig, W. Helv. Phys. Acta 1967, 40, 845. Shuey, R. T.; Zeller, H. R. Helv. Phys. Acta 1967, 40, 873.

- (22) Adrian, F. J.; Cochran, E. L.; Bowers, V. A. J. Chem. Phys. 1973, 59, 56.
- (23) Lindsay, D. M.; Herschbach, D. R.; Kwiram, A. L. Chem. Phys. Lett. 1974, 25, 175. Lindsay, D. M.; Garland, D. A. J. Phys. Chem. 1987, 91, 6158.
- (24) Rolfe, J.; Lipsett, F. R.; King, W. J. Phys. Rev. 1961, 123, 447. Ikezawa, M.; Rolfe, J. J. Chem. Phys. 1973, 58, 2024.
 - (25) Fischer, F.; Gründig, H.; Hilsch, R. Z. Phys. 1966, 189, 79.
- (26) Krauss, M.; Neumann, D.; Wahl, A. C.; Das, G.; Zemke, W. Phys.
- Rev. A 1973, 7, 69. (27) Das, G.; Wahl, A. C.; Zemke, W.; Stwalley, W. C. J. Chem. Phys. 1978, 68, 4252.
 - (28) Ewig, C. S.; Tellinghuisen, J. J. Chem. Phys. 1991, 95, 1097.
 - (29) Børve, K. J.; Siegbahn, P. E. M. Theor. Chim. Acta 1990, 77, 409.
- (30) Langhoff, S. R.; Bauschlicher, C. W.; Partridge, H. J. Chem. Phys. 1986, 84, 4474.
- (31) Bauschlicher, C. W.; Sodupe, M.; Partridge, H.; Langhoff, S. R. Chem. Phys. Lett. 1992, 197, 213.
 - (32) Alexander, M. H. J. Chem. Phys. 1978, 69, 3502.
- (33) Thakkar, A. J.; Koga, T.; Saito, M.; Hoffmeyer, R. E. Int. J. Quantum Chem. Symp. 1993, 27, 343.
- (34) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639. (35) Buenker, R. J.; Peyerimhoff, S. D. Theor. Chim. Acta 1974, 35, 33; ibidem, 1975, 39, 217. Buenker, R. J.; Peyerimhoff, S. D.; Butscher, W. Mol. Phys. 1978, 35, 771. Buenker, R. J. In Studies in Physical and Theoretical Chemistry; Curr. Aspects Quantum Chem.; Carbó, R., Ed.; Elsevier: Amsterdam, 1982; Vol. 21, p 17. Marian, C. M. Ph.D. Thesis, Bonn, 1981. Hess, B. A., Ph.D. Thesis, Bonn, 1981. Chandra, P.; Buenker, R. J. J. Chem. Phys. 1983, 79, 358, 366.
- (36) Luzanov, A. V.; Babich, E. N.; Ivanov, V. V. J. Mol. Struct. (THEOCHEM) 1994, 331, 211.
- (37) Davies, D. W. The Theory of the Electric and Magnetic Properties of Molecules; John Wiley: London, 1967.
- (38) Lindsay, D. M.; Herschbach, D. R.; Kwiram, A. L. J. Chem. Phys. 1974, 60, 315.
- (39) Rebane, K. K.; Rebane, L. A. Pure Appl. Chem. 1974, 37, 161. (40) Klotz, R.; Marian, C. M.; Peyerimhoff, S. D.; Hess, B. A.; Buenker,
- R. J. Chem. Phys. 1984, 89, 223.
- (41) Koseki, S.; Schmidt, M. W.; Gordon, M. S. J. Phys. Chem. 1992, 96, 10768. Koseki, S.; Gordon, M.; S.Schmidt, M. W. J. Phys. Chem. 1995, 99, 12764.
- (42) Bruna, P. J.; Lushington. G. H.; Grein, F. Chem. Phys. Lett. 1996, 258, 427.
- (43) Lushington, G. H.; Bruna, P. J.; Grein, F. Z. Phys. D 1996, 36, 301.
- (44) Lushington, G. H.; Bruna, P. J.; Grein, F. Int. J. Quantum Chem. 1997. 63. 511.
- (45) Bündgen, P.; Lushington, G. H.; Grein, F. Int. J. Quantum Chem. Symp. 1995, 29, 283.
- (46) Ramondo, F.; Sanna, N.; Bencivenni, L. J. Mol. Struct. (THEO-CHEM) 1992, 258, 361.
 - (47) Neuman, E. W. J. Chem. Phys. 1934, 2, 31.
 - (48) Bruna, P. J.; Grein, F. Mol. Phys., in press.
- (49) Bruna, P. J.; Grein, F. Int. J. QuantumChem., submitted for publication.